Combinatorial Networks
Week 4, Wednesday

An application of 4-uniform hypergraph on geometry

Theorem. (Erdos-Szekeres 1935) For any m > 4, there is a least N := N(m) such that for
any NN points in plane (which are in general position), there are m points in convex position.

Theorem 1. N(m) < R (5,m).

Proof. Let n = R®(5,m). For any given n points in plane, we want to find m points in
convex position. Define a Kr(f) on the n points and define a 2-edge-coloring

c: <[Z]> — {blue, red}

by: c({ijkl}) = blue, if 4, j, k, [ are in convex position, otherwise color red.
Since n = R™(5,m), this 2-edge-coloring ¢ has either a red Ké4) or a blue Kr(é‘). If there is

ared K, 5()4), then there are 5 points such that any 4 points are not in convex position, which

contradicting to fact 1. So we must have Kfé), which means there are m points such that
any 4 points are in convex position, then those m points are in convex position. |

Theorem 2. N(m) < R®)(m,m).

Proof. Given n = R®) (m,m) points in plane, we label them as 1,2,...,n. For i < j < k,
define
blue, if 4, j, k are clockwise,

c({ijk}) = {

red, if 4, j, k are counter clockwise.

Note: Any non-convex polygon can NOT have all triangles clockwise (or counter clockwise).
From this fact, we can obtain theorem 2. |

Fact. N(3) =3,N(4) =5,N(5) =9,N(6) = 17.
Conjecture. (The happy ending problem) N(m) = 2m~2 + 1.

Best bounds. 272 +1 < N(m) < (2m_4) 4™,

m—2

second proof on Hypergraph Ramsey Number: The stepping up argument

R(T_l)(s—l,t—l))

Theorem. R(’”)(s,t) < 2( o1

Proof. In fact, we prove r = 3, i.e. R®(s,t) < ("),

Let m = R(s—1,t— 1)+ 1 and N = 2(m;1), consider K3 = (V, (‘;)), consider its any
2-edge-coloring, we want to find a blue K3 or a red K}.

Definition: Vertices vy, v9, ..., v, are feasible for ¢, if there is x : ([727’]) — {red,blue} such
that for any ¢, j, k,

x (6, 7) = c({i, j, k1) (%)



Definition: For a set S,, C V — {v1,v9,..., 05}, v1, 02, ..., Up, S, are feasible for ¢, if for any
u € Sy, v1,v2, ..., Uy, U are feasible for c.

Lemma: If there is a feasible vy, v, ..., vy, of length m, then there is a blue K3 or a red
K}

Proof of lemma: Consider vy, vs,...,Vm_1, there is y : ([m2—1]) — {red,blue} such that
() holds, then x has a blue Ks;_1 or a red K;_;. If there is a blue K,_1, say vertices
Viys Vigy oey Viy_,, then v, Vig, ..., Vi, , Uy form a blue K by (x). ]
We will inductively construct feasible vy, v, ..., v;, S;, where S; C V — {v1,v9,...,v;} for
1<i<m—1.

At round 1, pick any v; € V and denote S; =V — {v1}, so v1,S; are feasible. Assume that
v1, V2, ..., U3, S; are feasible, pick v;11 € S; arbitrarily. For any u € S;—{v;+1}, define a vector
U(u) = (c1,c2,...,¢;) where ¢; = c({vj,vit1,u}) for 1 < j < i. For uj,up € S; — {vit1},
we say uj ~ ugp are equivalent if ¥(u1) = ¥(uz2). Note that ¥/(u) has 2 choices, so we can
partition S; — {v;11} into 2 equivalent classes. Let S;;1 be the largest one of equivalent
classes, namely, |S; 1| > 27%(|S;| — 1), note that vy, ve,...,v;11, Si11 are still feasible. Let
si = |Si|. If s;p—1 > 1, then vy, vy, ..., vy, are feasible.
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So s;—1 > 0, there is a feasible sequence vi, vo, ..., Up,. |



