
Combinatorial Networks
Week 4, Wednesday

An application of 4-uniform hypergraph on geometry

• Theorem. (Erdös-Szekeres 1935) For any m ≥ 4, there is a least N := N(m) such that for
any N points in plane (which are in general position), there are m points in convex position.

• Theorem 1. N(m) ≤ R(4)(5,m).

• Proof. Let n = R(4)(5,m). For any given n points in plane, we want to find m points in

convex position. Define a K
(4)
n on the n points and define a 2-edge-coloring

c :

(
[n]

4

)
→ {blue, red}

by: c({ijkl}) = blue, if i, j, k, l are in convex position, otherwise color red.

Since n = R(4)(5,m), this 2-edge-coloring c has either a red K
(4)
5 or a blue K

(4)
m . If there is

a red K
(4)
5 , then there are 5 points such that any 4 points are not in convex position, which

contradicting to fact 1. So we must have K
(4)
m , which means there are m points such that

any 4 points are in convex position, then those m points are in convex position.

• Theorem 2. N(m) ≤ R(3)(m,m).

• Proof. Given n = R(3)(m,m) points in plane, we label them as 1, 2, ..., n. For i < j < k,
define

c({ijk}) =

{
blue, if i, j, k are clockwise,

red, if i, j, k are counter clockwise.

Note: Any non-convex polygon can NOT have all triangles clockwise (or counter clockwise).
From this fact, we can obtain theorem 2.

• Fact. N(3) = 3, N(4) = 5, N(5) = 9, N(6) = 17.

• Conjecture. (The happy ending problem) N(m) = 2m−2 + 1.

• Best bounds. 2m−2 + 1 ≤ N(m) ≤
(
2m−4
m−2

)
≈ 4m.

The second proof on Hypergraph Ramsey Number: The stepping up argument

• Theorem. R(r)(s, t) ≤ 2(R
(r−1)(s−1,t−1)

r−1 ).

• Proof. In fact, we prove r = 3, i.e. R(3)(s, t) ≤ 2(R(s−1,t−1)
2 ).

Let m = R(s − 1, t − 1) + 1 and N = 2(m−1
2 ), consider K3

N = (V,
(
V
3

)
), consider its any

2-edge-coloring, we want to find a blue K3
s or a red K3

t .
Definition: Vertices v1, v2, ..., vn are feasible for c, if there is χ :

(
[n]
2

)
→ {red,blue} such

that for any i, j, k,
χ(i, j) = c({i, j, k})(∗).
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Definition: For a set Sn ⊂ V − {v1, v2, ..., vn}, v1, v2, ..., vn, Sn are feasible for c, if for any
u ∈ Sn, v1, v2, ..., vn, u are feasible for c.
Lemma: If there is a feasible v1, v2, ..., vm of length m, then there is a blue K3

s or a red
K3

t .
Proof of lemma: Consider v1, v2, ..., vm−1, there is χ :

(
[m−1]

2

)
→ {red,blue} such that

(∗) holds, then χ has a blue Ks−1 or a red Kt−1. If there is a blue Ks−1, say vertices

vi1 , vi2 , ..., vis−1 , then vi1 , vi2 , ..., vis−1 , vm form a blue K
(3)
s by (∗).

We will inductively construct feasible v1, v2, ..., vi, Si, where Si ⊂ V − {v1, v2, ..., vi} for
1 ≤ i ≤ m− 1.
At round 1, pick any v1 ∈ V and denote S1 = V −{v1}, so v1, S1 are feasible. Assume that
v1, v2, ..., vi, Si are feasible, pick vi+1 ∈ Si arbitrarily. For any u ∈ Si−{vi+1}, define a vector
~v(u) = (c1, c2, ..., ci) where cj = c({vj , vi+1, u}) for 1 ≤ j ≤ i. For u1, u2 ∈ Si − {vi+1},
we say u1 ∼ u2 are equivalent if ~v(u1) = ~v(u2). Note that ~v(u) has 2i choices, so we can
partition Si − {vi+1} into 2i equivalent classes. Let Si+1 be the largest one of equivalent
classes, namely, |Si+1| ≥ 2−i(|Si| − 1), note that v1, v2, ..., vi+1, Si+1 are still feasible. Let
si = |Si|. If sm−1 ≥ 1, then v1, v2, ..., vm are feasible.

sm−1 ≥ 2−(m−2)sm−2 − 2−(m−2)

≥ 2−(m−2)(2−(m−3)sm−3 − 2−(m−3))− 2−(m−2)

≥ ......

≥ 2−[(m−2)+(m−3)+...+1]s1 −
m−2∑
j=1

2
−

m−2∑
i=j

= 2−(m−1
2 )s1 −

m−2∑
j=1

2
−

m−2∑
i=j

= 2−(m−1
2 )N − 2−(m−1

2 ) −
m−2∑
j=1

2
−

m−2∑
i=j > 0

So sm−1 > 0, there is a feasible sequence v1, v2, ..., vm.
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